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Spin exchange interaction with tunable range between graphene quantum dots
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We study the spin exchange between two electrons localized in separate quantum dots in graphene. The
electronic states in the conduction band are coupled indirectly by tunneling to a common continuum of delocalized
states in the valence band. As a model, we use a two-impurity Anderson Hamiltonian which we subsequently
transform into an effective spin Hamiltonian by way of a two-stage Schrieffer-Wolff transformation. We then
compare our result to that from a Coqblin-Schrieffer approach as well as to fourth-order perturbation theory.
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I. INTRODUCTION

Spins in quantum dots (QDs) are under intense investigation
as a possible realization of qubits.1 Among the currently
most advanced solid-state structures are top-gate-patterned
two-dimensional electron gases in GaAs heterostructures.2

However, in this host material hyperfine interaction between
the spin of the electron and that of the atomic nuclei of the host
material leads to relatively short coherence times. A promising
way to circumvent this problem is the use of carbon as a host
material for spin qubits. Natural carbon comprises 99% of
the carbon isotope 12C, which has no nuclear spin. This gives
carbon-based devices the advantage that decoherence due to
hyperfine interaction is suppressed by the small abundance
of nuclear spins. Carbon is also a relatively light element,
therefore spin-orbit coupling is expected to be weaker than
in GaAs. One can expect a significant improvement of spin
coherence times in carbon-based structures. Graphene3 is
a promising host material for spin qubits.4,5 It naturally
creates a perfect confinement of electrons in one dimension.
Moreover, in contrast to carbon nanotubes,6,7 the ability to
lithographically pattern graphene allows for a determinis-
tic device preparation, which is necessary for scalability.1

Graphene has a very interesting electronic structure, with
a gapless and linear dispersion around the Fermi energy.
Furthermore, the electronic eigenstates carry an additional
internal degree of freedom, dubbed pseudospin, which is
always aligned with the direction of the momentum. These
properties imitate the behavior of relativistic chiral massless
Dirac particles.8 These relativistic-like properties lead to the
phenomenon of Klein tunneling,9 which actually prohibits
any electrostatic confinement of electrons, i.e., the formation
of QDs.

Among the most promising ideas for overcoming Klein
tunneling is to use graphene nanoribbons or constrictions in-
stead of extended graphene as host material4,10–12 (see Fig. 1).
In clean graphene nanoribbons with armchair boundaries, the
additional confinement can lead to the opening of a small
energy gap at the Fermi energy.13 The size of the gap is in-
versely proportional to the width of the ribbon. In the presence
of such a gap, the pseudorelativistic behavior of the charge
carriers is lost, and the material resembles a regular gaped
semiconductor, enabling electrostatic confinement.4 However,
it has been shown both experimentally and theoretically that

rough edges are sufficient to open op a gap. As a side effect, the
sharp edges also lift the valley degeneracy in bulk graphene,
which could suppress the Heisenberg spin interaction between
the QDs.4

The exchange interaction has been identified as an un-
derlying mechanism to mediate the necessary interactions
for two-qubit gates among spin qubits.1,14 The Heisenberg
exchange coupling between spins Si is described by the
Hamiltonian H = ∑

〈ij〉 Jij Si · Sj and provides a pairwise
coupling between adjacent spin qubits i and j . In the context
of quantum-computational applications it is also necessary
to couple qubits which are not nearest neighbors. Long-
range spin-spin interactions can, e.g., be mediated by cavity
photons.15 Here, we investigate the coupling between two spin
qubits in a graphene nanoribbon via the valence band. We find
that this coupling has a tunable range and can be used to couple
distant QD spins.

Following Ref. 4, we consider a system as shown in
the upper part of Fig. 1, where several electric gates are
placed on top of an armchair nanoribbon. By applying a
gate voltage, the dispersion relation of the material below
the gates can be shifted in energy (see the lower part of
Fig. 1). If, at a certain energy, extended states can exist
in one section, but not in the neighboring ribbon sections,
additional size quantization along the ribbon leads to single
localized states. In the energy interval above and below the
gap, the states are extended and form a continuum. With a
suitable adjustment of the chemical potential, the localized
states can be filled with one electron each, forming a one-
dimensional array of qubits. In the following, we calculate
the Heisenberg spin interaction between two such spin
qubits.

The RKKY interaction16 between localized magnetic mo-
ments is well discussed for extended graphene (see Refs. 17
and 18) and, after the experimental discovery of graphene,
revisited in Refs. 19–23. Here, we study a graphene nanoribbon
where a gap opens at the Fermi energy. Due to this gap,
the spin exchange problem we are interested in resembles
less the one in extended graphene and more the case in
ordinary semiconductors in reduced dimensions,24–26 like
quantum wells27 or quantum wires.28 However, compared to
conventional semiconductors, the band gap can be unusually
small, of the order of 1–100 meV. Therefore, by applying
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FIG. 1. (Color online) One-dimensional quantum dot array on an
armchair graphene nanoribbon (drawing not to scale). Due to the
ribbon structure, the dispersion relation of graphene can exhibit a
gap, which scales inversely with the ribbon width. This gap allows
for electrostatic confinement of electrons in quantum dots. As the
band gap is small compared to regular semiconductors, the spin
exchange mechanism between the quantum dots is not dominated by
RKKY-type processes alone, and superexchange processes contribute
significantly.

gate voltages, one can realize an arbitrary alignment of the
QD energy level relative to the valence and conduction band.
Due to the proximity of the band edges of the valence and/or
conduction band, the band edges must be taken into account.29

II. TRANSFORMATION OF THE HAMILTONIAN

A. Model

We model the system as two Anderson impurities, which are
both in contact with a common energy band. The Hamiltonian
for our model is

H = H0 + HT , (1)

H0 =
∑
i=1,2

( ∑
σ=↑,↓

εia
†
iσ aiσ + Uia

†
i↑ai↑a

†
i↓ai↓

)

+
∑
kσ

εkc
†
kσ ckσ , (2)

HT =
∑
ikσ

(tik(r i)c
†
kσ aiσ + t�ik(r i)a

†
iσ ckσ ). (3)

The first part of H0 describes the two independent QDs,
i = 1,2, containing one electronic level each. The fermionic
operators aiσ and a

†
iσ create and annihilate electrons on dot

i with spin σ . Due to the low electrostatic capacity of a QD,
double occupation of one individual dot is associated with
a substantial charging energy Ui . For quantum computation
applications one is interested in a parameter regime where the
QDs are occupied with one electron each to form a spin-1/2
qubit.

The second part of H0 models the contacting continuum of
states as a large reservoir of noninteracting electrons. Here
ckσ ,c

†
kσ denote the annihilation and creation operators for

electrons in the continuum with (orbital) quantum numbers
k and spin σ . The continuum is assumed to be unpolarized
and at zero temperature (filled valence band). The tunneling
Hamiltonian HT describes spin-conserving tunneling between
the two dots and the continuum. The tunnel amplitudes tik(r i)
depend on the dot and the continuum quantum numbers i and
k, as well as on the position r i of the QDs. However, the exact
form of tik(r i) depends on the system under consideration.

The two-impurity Anderson model and the strongly re-
lated Anderson lattice model is extensively discussed in the
literature.30–43 The ansatz we use was originally proposed by
Coqblin and Schrieffer in Ref. 44.

B. Schrieffer-Wolff transformation

Following Refs. 39, 40, and 45, we use a two-stage or
nested Schrieffer-Wolff transformation to derive an effective
spin Hamiltonian. In contrast to previous works, we do not
assume equal energy levels in the two Anderson impurities, as
the confinement of the QDs can be modified individually. By
keeping track of the dot indices it is also possible to identify
different physical processes in the final result, and enables us
to compare our result to higher-order perturbation theory.

The Schrieffer-Wolff transformation42,46–48 is based on
a canonical transformation of the Hamiltonian, H (1) =
eiS H e−iS = H + [iS,H ] + 1

2 [iS,[iS,H ]] + . . .. The divi-
sion of the Hamiltonian H into a free Hamiltonian H0 and
a small perturbation HT allows us to choose a transforma-
tion S1, fulfilling the relation [iS1,H0] = −HT and leading
us to the effective Hamiltonian H (1) = H0 + 1

2 [iS1,HT ] +
1
3 [iS1,[iS1,HT ]] + 1

6 [iS1,[iS1,[iS1,HT ]]] + . . ., where the
lowest-order tunneling term is canceled. Since S also has to
be of first order in the tunneling amplitudes, S1 ∝ HT , the
interaction now appears (at least) in second order. Please see
Appendix A for details on the first Schrieffer-Wolff transform.

By a subsequent Schrieffer-Wolff transformation with the
generator S2 fulfilling [iS2,H0] = − 1

2 [iS1,HT ], the second-
order interaction term can also be removed. Note that now
S2 ∝ H 2

T . At the end we project the resulting Hamiltonian on
the subspace where both QDs are occupied by one electron.
As all odd-order interactions do not conserve the occupation
numbers of the QD, they can be neglected, as they will be
projected out at the end of the calculation. Combining both
steps, we arrive at the effective Hamiltonian

H (2) = H0 + 1
4 [iS2,[iS1,HT ]] + 1

8 [iS1,[iS1,[iS1,HT ]]], (4)

where corrections in sixth and higher orders in the tunneling
amplitudes have been neglected. After projecting out the
continuum degrees of freedom, and in addition to unimportant
level renormalizations, which we do not discuss, we find
a Heisenberg-like interaction, J S1 · S2, which couples the
two QD spins Si = ∑

αβ a
†
iα σ αβ aiβ , consistent with Refs. 39

and 50. A detailed calculation is presented in Appendix B.
After nontrivial regrouping of terms,51 one can separate the
spin interaction into parts originating from different virtual
tunneling processes defined by their intermediate virtual
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quantum state with the explicit shape

J = 2
∑
k,q

t�1,kt2,kt1,q t
�
2,q ei(k−q)·(R1−R2) ( J1 + J2 + J3 + J4 ), (5)

J1 =
(

1

εk − ε1
− 1

εq − ε1 − U1

)
nk − nq

εk − εq

(
1

εq − ε2
− 1

εk − ε2 − U2

)
, (6)

J2 =
(

1

εk − ε1
+ 1

εq − ε2

)
1 − nq

εk + εq − ε1 − ε2

(
1

εq − ε1
+ 1

εk − ε2

)
, (7)

J3 =
(

1

ε1 + U1 − εk

+ 1

ε2 + U2 − εq

) +nq

ε1 + U1 + ε2 + U2 − εk − εq

(
1

ε1 + U1 − εq

+ 1

ε2 + U2 − εk

)
, (8)

J4 =
(

1

εk − ε1
+ 1

εk − ε2 − U2

) −nq

ε2 + U2 − ε1

(
1

εq − ε1
− 1

εq − ε2 − U2

)
+ 1

εk − ε1

+1

ε2 + U2 − ε1

1

εq − ε1
+ (1 ↔ 2). (9)

The first term J1 resembles an RKKY interaction.16 The
interaction is mediated by a virtual particle-hole excitation
in the electron gas [see Fig. 2(a)]. Therefore the energy of
the intermediate excitation is given by εq − εk . The second
and third contributions to the spin-spin interaction originate
from virtual two-particle(hole) excitations in the continuum
Fermi sea [see Figs. 2(b) and 2(c)]. Two electrons tunnel
coherently from or to the QDs. Thus, as intermediate virtual
states, the two QDs are both doubly occupied (empty).
Afterward, the electrons tunnel crosswise back, interchanging
the spins of the QDs. This process leads to the interactions J2

and J3.
Finally, the last contribution J4 is caused by the possibility

of direct tunneling of one dot electron to the other dot. The
virtual intermediate state is therefore one double-occupied dot
and one empty dot. The tunneling can happen through filled
as well as empty states in the electron gas [see Fig. 2(d)].

C. Relation to Coqblin-Schrieffer model

In Ref. 44 Coqblin and Schrieffer present their widely
used approach31,52 to the two-impurity Anderson model. They
perform a single Schrieffer-Wolff transformation and project
the resulting Hamiltonian of the single-occupied impurities.
With this, they transform the two individual Anderson models
into two individual s-d models or Kondo impurities. The spin
of one QD Si is coupled to the bath electron spins by

HKondo =
∑

kq,σσ ′
J i

kq Si · c
†
kσσ σσ ′cqσ ′ ; (10)

see Appendix A for details. By treating that Hamiltonian in
second-order perturbation theory, they compute a RKKY-like
spin-spin interaction16 of the form∑

kq

J 1
kqJ

2
qk

nk − nq

εk − εq

S1 · S2. (11)

Even though Eq. (11) captures the basic features of Eq. (6),
it is an expansion inconsistent in the order of the tunnel
amplitudes. First, the initial Schrieffer-Wolff transformation
generates not only terms of second order, but also the term
[iS1,[iS1,[iS1,HT ], which contributes in fourth order41 [see

Eq. (4)]. Actually contributions from this higher order term
cancel several parts in Eq. (11), leading to Eq. (6). By truncat-
ing the transformation at second order, these contributions to
the spin interaction are lost.

Second, the initial Schrieffer-Wolff transformation gen-
erates not only the Kondo-Hamiltonian, but also terms in
second order of the form a

†
1a2, which describe direct tun-

neling between the two QDs.49 In a subsequent second-order
perturbation theory, these terms also lead to an interdot spin
interaction. In Ref. 44 these interactions are neglected due to
the premature projection of the result of the Schrieffer-Wolff
transformation on the single occupied dot subspace.

Interestingly, in the limit of energy levels far away from the
Fermi energy, i.e., when one assumes that the spin coupling
J i

kq approaches a constant, the Coqblin-Schrieffer approach
generates the correct result. However, nowadays the Anderson
model is extensively used to describe QDs.28 In contrast to rare
earth compounds or true atomic systems, the typical energy
scale of the QD level spectrum is several orders of magnitude
smaller. Therefore in these artificial systems the application
of the Coqblin-Schrieffer model needs to be handled with
care.

D. Relation to fourth-order perturbation theory

Starting from the two-impurity Anderson model, one
can also derive a fourth-order dot spin-spin interaction by
perturbation theory,32,34,38,53 with or without diagrammatical
help. The perturbation approach nearly reproduces our results
Eqs. (6)–(9) with one exception: the structure of the Fermi
functions. Via perturbation theory, one would expect, for
example, that the two-lead-particle excitation [see Fig. 2(c)]
only happens if the two electron gas states k and q are
empty; therefore the spin coupling J2 should be proportional
to (1 − nk)(1 − nq). In contrast, the contribution from a
Schrieffer-Wolff transformation is proportional to (1 − nq) and
independent of nk . By counting the operator commutators, one
can directly determine that the spin-spin coupling derived by
a two-stage Schrieffer-Wolff transformation cannot generate
terms that contain four lead operators, which would be
necessary for a product term like nknq . The reason for
this discrepancy between fourth order perturbation theory
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FIG. 2. (Color online) Several virtual tunnel processes contribute
to the spin-spin interaction between the dots. These processes can be
classified by the intermediate state of the system. While particle-hole
excitation (a) leads to an RKKY-like interaction, processes (b–d) are
usually summarized as superexchange.

and Schrieffer-Wolff transformation lies in the procedure
of integrating out the lead degrees of freedom, i.e., by
the replacement of the thermal average of lead operators
〈c†kck〉th by the Fermi function nk . In the case of the
perturbation theory, the operators c

†
k,ck refer to the bare

unperturbed electronic states of the lead, i.e., one assumes
that the lead is actually not perturbed by tunneling. After
the Schrieffer-Wolff transformation, the lead operators refer
to new lead states, which are hybridized with the localized
dot states. By performing the thermal average, one therefore
assumes that these new hybridized lead states are in thermal
equilibrium, not the bare lead states. Therefore, it is not
surprising that the results of a Schrieffer-Wolff transformation
and perturbation theory differ. However, it is surprising that
one can express the result of the Schrieffer-Wolff trans-
formation in the same functional form one would expect
from perturbation theory, except for the Fermi functions.
Only due to this structure of terms one actually can, in

the spirit of Feynman diagrams, assign virtual processes as
shown in Fig. 2. For this reason, the grouping of terms
in Eqs. (6)–(9) is physically plausible but, to some extent,
arbitrary.

III. APPLICATION TO GRAPHENE NANORIBBON
QUANTUM DOTS

Up to now, the computed result in Eqs. (6)–(9) is general
for the spin coupling of two qubits by a common continuum
of states labeled by the indices k and q. In the following, we
specify this continuum to the electronic structure of a graphene
nanoribbon aligned along the y direction.

A. Band structure

Bulk graphene has two independent Fermi points at the
momenta K and K ′ in reciprocal space, generating the valley
degeneracy. Due to the armchair boundary conditions of
the ribbon, the propagating wave states with momentum
K + k and K ′ + k are coupled.13,54 The confinement in the
x direction leads to a further quantization of the transverse
wave vector kx ≡ kn = (n ± 1/3)π/W , with W denoting the
ribbon’s width and n ∈ N. Therefore the continuum states can
be characterized by the sub-band index n and the momentum
component ky ≡ k along the ribbon. Close to the Fermi energy,
the dispersion relations becomes

εk,n = h̄vF

√
k2 + k2

n, (12)

with the Fermi velocity vF of graphene. This dispersion
resembles the dispersion of a massive relativistic particle.

The transverse confinement determines the energy gap
2εg = 2h̄vF k0, which scales inversely with the ribbon width.55

Due to this gap, electrons can be confined by electrostatic
gates, in analogy to conventional semiconductors.4 We assume
the applied electric potential to be independent of the x
coordinate (see Fig. 1), therefore the band index n is conserved.
Therefore we only need to consider the continuum sub-band
with the same band index as the bound state(s). Even if this
symmetry is broken, the generalization to multi-sub-bands is
straightforward.7 As a further simplification, we assume that
by applying electrostatic gates, the dispersion relation of the
extended states is still described by Eq. (12).

B. Tunnel amplitudes

The spin exchange is proportional to the product of the four
tunnel amplitudes t�1,k(r1)t2,k(r2)t1,q(r1)t�2,q(r2). In analogy
to most cases studied in the literature, we assume that the
amplitude of the overlap of the bound states and the extended
states does not explicitly depend on the momentum k of the
extended states. This assumption is valid if the wave function
of the bound state is localized on a length scale smaller than
the wavelength of the extended state. However, in QDs in
semiconductors in general, and in particular in the vicinity of a
band edge, this assumption may not be valid. As k-independent
tunnel amplitudes lead to a shorter spin exchange range, the
spin exchange range derived in the following can be seen
only as a lower bound. Although the magnitude of the tunnel
amplitude does not depend on k within this approximation,
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the fact that the two QDs are separated in space gives rise to a
relative phase. While in ordinary isotropic metals this phase is
simply given by eik·r i , in graphene the valley degeneracy has to
be taken into account. In nanoribbons, the energy eigenstates
are phase-locked superpositions of the states of both valleys.
Therefore, the overlap of the wave functions4,54 leads to a
tunnel amplitude of the form

t1,k(r1) = t1e
−ik·r1

e−i K ·r1 + e−i K ′ ·r1

√
2

. (13)

The spin coupling therefore will always contain a contribution
which oscillates on inter-atomic distances and one contribution
which varies on the length scale of the envelope wave function.
As the QDs under consideration are not spatially defined with
lattice site precision, we expect that the oscillating contribution
to the spin exchange will average out.

C. Spin-exchange range

Which of the virtual tunnel processes (see Fig. 2) dominates
the spin exchange between two QDs depends on the alignment
of the dot energy levels, band gap, and edges. Roughly
speaking, the virtual process requiring the lowest excitation
energy will dominate. As we assume the graphene nanoribbon
to be nearly undoped, the Fermi energy of the system lies
within the band gap. Therefore the valence band is entirely
filled, and the conduction band is empty. The RKKY-like
exchange interaction via a particle-hole excitation in the
continuum will be suppressed by the band gap 2εg , and
superexchange processes will dominate. In order to maximize
the nonlocal exchange between remote spins, we focus on the
scenario shown in Fig. 3, where the QD level lies close to
the valence band, and the charging energy is smaller than the
band gap.

In this level alignment, direct tunneling processes via
the valence band dominate the spin exchange. The resulting

ε1

ε1+U1 εg

ε2

ε2+U2

εg

FIG. 3. If the quantum dot level lies close to the valence band,
and the charging energy is lower than the band gap, direct tunneling
processes will dominate the spin exchange between the quantum dots.

integrals can be computed by Cauchy’s integral formula. The
exchange due to direct tunneling turns out to be

J = −|t1|2|t2|2
4�E2

1

ε2 + U2 − ε1

(ε2 + U2)2

ε2
g − (ε2 − U2)2

× e
−2

√
ε2
g−(ε2+U2)2

h̄vF
�r + (1 ↔ 2), (14)

with the QD distance �r = |r1 − r2|. The energy �E =
h̄vF /L is the energy splitting of the continuum states, with
L being the length of the ribbon. As the tunnel amplitudes ti
decrease with the real-space particle density of the band states
with 1/

√
L, the strength of the spin exchange is independent

of the overall length of the ribbon.
The strength of the spin coupling driven by direct tunneling

diverges within fourth order, if the single-occupied state of
one dot becomes resonant with the double-occupied state
of the other dot. The range λ = h̄vF /2

√
ε2
g − (ε2 + U2)2 of

the coupling Eq. (14) on the other side is controlled by
the energy separation between the double-occupied state
of the one dot and the valence band edge at energy −εg . If
one assumes that the single-occupied states of the two dots
are close to the band edge (εg ≈ εi), the exchange range
scales as h̄vF /

√
8εgUi . For a graphene nanoribbon with a

width of 50 nm and a QD with a charging energy of 4 meV,11

this length is of order 50 nm, i.e., comparable to the QD
length.

If one assumes that, in analogy to a capacitor, the charging
energy of a QD scales inversely with its area,11 then the range
of the spin exchange interaction scales linearly with the width
of the nanoribbon.

D. Further considerations

The lower bound for the spin exchange range between QDs
in a graphene nanoribbon is given by the ribbon width. For
this result we considered only virtual tunnel processes via free
continuum states. In addition, also direct tunneling between the
QD states can occur. If the QD level approaches the band gap,
the bound electron leaks further and further into the barrier
due to the weakening of the confinement. Therefore it can
happen that two neighboring QD wave functions can acquire a
nonvanishing overlap, and direct tunneling becomes possible.
Direct tunneling is accompanied also by a spin-exchange
interaction.4

Furthermore, we have assumed so far that the graphene
nanoribbon is infinitely long. This assumption is hidden in
the approach to treat the continuum states with momentum k

independent of the state −k. However, if a finite ribbon length
leads to a defined phase relation of the forward and backward
propagating states, then one part of the tunnel amplitude
will become entirely independent on the momentum k and,
therefore, on the distance �r .4 (cf. also the discussion in
Sec. III B.) In this case, the range λ of the spin exchange is not
determined by the dephasing of the exchange contributions of
different states within the Fermi sea, but only by the phase
coherence length of the extended states.
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IV. CONCLUSIONS

In this paper, we have discussed the spin exchange between
localized states which are only indirectly coupled via a
continuum of states. Using a two-stage Schrieffer-Wolff
transformation, we transformed a two-impurity Anderson
model into an effective spin Hamiltonian. Based on our result,
we discussed the validity of the Coqblin-Schrieffer approach
to this problem. Furthermore, by reordering the terms, we
were able to directly compare the Schrieffer-Wolff result
to perturbation theory and observe distinct differences that
originate from different assumptions on the continuum of
states.

As an application of the formalism developed here, we dis-
cussed the spin exchange interaction between electrostatically
confined QDs in a graphene nanoribbon, as shown in Eq. (14).
As a lower bound, we derive a range of this spin exchange of the
order of the nanoribbon width. However, the dot energies can
be adjusted in such a way as to extend the exchange coupling
to longer distances.
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APPENDIX A: FIRST SCHRIEFFER-WOLFF
TRANSFORMATION

The generator of the first Schrieffer-Wolff transformation
must fulfill the relation [iS1,H0] = −HT . As the part of
the Hamiltonian H0 only containS number operators, i.e., is
quadratic or quartic in the fermion operators, one can deduce
that iS must have the same structure as the tunnel Hamiltonian
HT , up to a prefactor containing either constants or number
operators. With such an ansatz, the generator of the first
Schrieffer-Wolff transformation is found to be

iS1 =
∑
i,k,σ

ti,k

εk − εi − Uiniσ̄

c
†
kσ aiσ − t�i,k

εk − εi − Uiniσ̄

a
†
iσ ckσ

=
∑
i,k,σ

ti,k

[
1 − niσ̄

εk − εi

+ niσ̄

εk − εi − Uiniσ̄

]
c
†
kσ aiσ − h.c.

(A1)

This transformation removes the interaction term of first order
in the tunneling amplitude and, instead, generates higher

order interactions starting at the second order of t . The new
interaction Hamiltonian H

(1)
T = 1

2 [iS1,HT ] + O(t3) becomes

H
(1)
T =

∑
i,kq,σ

J i
kq Si · skq + −1

2

∑
ij,k,σ

Ak
ij a

†
iσ ajσ

+ dot double empty/filling terms

+ spin-independent lead-scattering terms. (A2)

The first term resembles the Kondo model. The spin of the
QD Si = ∑

σσ ′ a
†
iσ σ σσ ′ aiσ ′ couples to the band spin skq =∑

σσ ′ c
†
kσ σ σσ ′ cqσ ′ . The coupling strength is given by J i

kq =
t�i,q ti,k[ 1

εk−εi
− 1

εk−ε1−U1
+ 1

εq−εi
− 1

εq−ε1−U1
]. The second term

describes a direct tunneling of one QD electron to another
dot with the effective coupling strength Ak

ij = t�i,ktj,k[ 1−niσ̄

εk−εi
+

niσ̄

εk−εi−Ui
+ 1−njσ̄

εk−εj
+ njσ̄

εk−εj −Uj
], with σ̄ denoting the opposite

spin orientation of σ . This term can also lead to a spin
exchange in fourth order, so it is not negligible. The further
parts of Eq. (A2) include processes which change the oc-
cupation of one QD by two electrons and spin-independent
scattering of continuum electrons at one dot.

APPENDIX B: SECOND SCHRIEFFER-WOLFF
TRANSFORMATION

For the second Schrieffer-Wolff transformation, the proce-
dure is very similar, using the ansatz for iS2 that resembles the
second order part of the interaction term, derived by the first
transformation. However, as one is, in the end, interested in the
fourth-order parts of the Hamiltonian, which couple two QD
spins and conserve the QD occupation number, one only needs
to consider the first two parts of Eq. (A2). The generator for the
transformation therefore can be written as iS2 = iS

(a)
2 + iS

(b)
2 ,

with

iS
(a)
2 =

∑
i,kq,σ

1

εk − εq

J i
kq Si · skq,

(B1)

iS
(b)
2 = −1

2

∑
ij,k,σ

1

εi + Uiniσ̄ − εj − Ujnjσ̄

Ak
ij a

†
iσ ajσ .

The other second-order terms finally drop out in the end,
when the Hamiltonian is projected on the subspace of single-
occupied QDs. For the regrouping of terms in Eqs. (5)–(9), one
needs the symmetry of the expressions under the replacements
1 ↔ 2 and k ↔ q.
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